
\qquad
\qquad

Vectors and Scalars

\qquad

- Scalar \qquad
- quantities that only contain magnitude and units.
- Ex: time, mass, length, temperature \qquad
- Vector
- quantities that contain magnitude and direction (as well as units).
-Ex: displacement, velocity, force, acceleration

Vector Notation

- We represent a vector quantity by drawing \qquad an arrow above the letter.
\vec{d}

Direction

- The direction of the vector can be \qquad described in a number of ways:
- Common terms (left/right, up/down, forward/backward)
- Compass directions (north, south, east, west) \qquad
- Number line, using positive and negative signs (+/-)
- Coordinate system using angles of rotation from the horizontal axis

Adding Vectors

- There are two ways that we will use to add \qquad vectors:
- Scale drawings
- Algebraically

Scale Drawings

- We draw vectors as lines with an arrow \qquad head representing the tip of the vector

- The other end of the vector line is called the tail \qquad
\qquad
\qquad
- Choose an appropriate scale \qquad
- Draw a line representing the first vector
- Draw a line representing the second vector starting from the tip of the first vector
\qquad
- Continue until all vectors are drawn
- Join the tail of the first vector to the tip of the last vector
- Measure the length and angle of the joining line

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- We could also add these vectors using the Pythagorean theorem, sine laws, and cosine law \qquad

Components of Vectors

\qquad

- Consider the vector $5 \mathrm{~m} 37^{\circ} \mathrm{N}$ of E

- This vector forms the hypotenuse of a right-angle triangle.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- The sides of this triangle are the \qquad components of the vector
- These components can be calculated with
\qquad trigonometry

- This is true for any vector

Example

\qquad

- $20 \mathrm{~ms}^{-1} 30^{\circ} \mathrm{N}$ of W \qquad
\qquad

$$
\begin{aligned}
& \text { - We can calculate the horizontal side (horizontal } \\
& \text { component or } \mathrm{x} \text { component) of the triangle by } \\
& \text { using cosine. } \\
& \cos 30^{\circ}=\frac{x}{20 \mathrm{~ms}^{-1}} \\
& x=\left(20 \mathrm{~ms}^{-1}\right) \cos 30^{\circ} \\
& x=17.3 \mathrm{~ms}^{-1}
\end{aligned}
$$

- We can find the vertical side (vertical component or y component) of the triangle by using sine.
\qquad
\qquad
$\sin 30^{\circ}=\frac{y}{20 m s^{-1}}$
$y=\left(20 \mathrm{~ms}^{-1}\right) \sin 30^{\circ}$
$y=10 \mathrm{~ms}^{-1}$

Adding with Components

- We can add vectors by using their \qquad components
- Find the components of each vector
- Add the x components together (remembering direction)
- Add the y components together (remembering the direction) \qquad
- Put the final vector together (using the Pythagorean therom) \qquad
\qquad

Example

- Add the following vectors: \qquad
- $30 \mathrm{~ms}^{-1} 25^{\circ} \mathrm{N}$ of W
- $50 \mathrm{~ms}^{-1} 40^{\circ} \mathrm{S}$ of E

Definitions

\qquad

- Displacement \qquad
- the change in position of an object. How far the object is away from its starting position. Displacement is a vector quantity.
- Symbol: s

- Velocity

- signifies both speed and direction. It is a vector quantity.
- The change in displacement with respect to time
- Symbol: v

$$
v=\frac{\Delta s}{\Delta t}
$$

- Acceleration

- how rapidly velocity changes. It is a vector quantity.
- Change in velocity with respect to time
- It is important to note that acceleration can occur if either speed or direction changes.
- Symbol: a

$$
a=\frac{\Delta v}{\Delta t}
$$

What is the difference between average and instantaneous?

- Average
- Measured over a period of time
- Instantaneous
- Measured over a single infinitesimally small point in time
- At one exact point in time
- For example, a speedometer measures instantaneous velocity of a vehicle

Frames of Reference

- Any measurement of position, distance, or speed must be made with respect to a frame of reference.

Example

- You are in a car traveling $80 \mathrm{kmh}^{-1}$. You notice a fly flying towards the front of the car at a speed of $5 \mathrm{kmh}^{-1}$.
- You are looking at the fly's speed from the reference frame of the car.
- To someone standing on the sidewalk the fly is traveling at a speed of $80 \mathrm{kmh}^{-1}+5$ $\mathrm{kmh}^{-1}=85 \mathrm{kmh}^{-1}$ with respect to the ground.
- This is why it is always important to know the frame of reference.
- In everyday life, we usually mean "with respect to the Earth" without even thinking about it, but the reference frame should be specified whenever there might be confusion.
- The term relative is used in these cases.

Graphical Representation of Motion

- Consider a car moving with a constant velocity of $10 \mathrm{~ms}^{-1}$.
- The position of the car will be calculated at 1 second intervals and a graph of position vs time will be created for the first 10 seconds of motion.

- The slope of the line is constant and is equal to the velocity of the car.

$$
\text { slope }=\frac{\Delta x}{\Delta t}=\frac{(100-0)}{(10-0)}=10 \mathrm{~ms}^{-1}=v
$$

- Now consider a car moving with a constant acceleration of $5 \mathrm{~ms}^{-2}$.
- A position vs time graph of this motion is curved.
- The slope of this line is not constant.
- The slope increases since the velocity increases.
- A graph of velocity vs time can be obtained by calculating the slope at each point on the position vs time graph.
- This is done by calculating the slope of a tangent line at each point.

\qquad

\qquad
\qquad
\qquad
\qquad
- The slope of the line is constant and is equal to the acceleration of the car.

$$
\text { slope }=\frac{\Delta v}{\Delta t}=\frac{(50)}{(10)}=5 \mathrm{~ms}^{-2}=a
$$

- The area under the curve can also be calculated.

- This is the final displacement of the car.
- The displacement at any time can be calculated by calculating the area under the curve up to that point.
- For example, the displacement at 5 seconds would be

- Similarly, the area under an acceleration vs time graph is velocity.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

